Fast Nearest Neighbour Classification

Gordon Lesti

July 17, 2015

Structure

Introduction Problem Use

Solutions

Full Search Orchards Algorithm Annulus Method AESA

Outlook

Resources

Nearest-Neighbour Searching

Input

- ► Set U
- Distance function d on \mathbb{U} , with $d: \mathbb{U} \times \mathbb{U} \to \mathbb{R}$
- Set $S \subset \mathbb{U}$ of size n
- Query item $q \in \mathbb{U}$

Output

• Item $a \in S$, with $d(q, a) \leq d(q, x)$ for all $x \in S$

Use

- Pattern recognition
- Statistical classification
- Image editing
- Coding theory
- Data compression
- Recommender system
- ▶ ...

- Calculate d(q, x) for all $x \in S$
- Return $a \in S$, with $d(q, a) \leq d(q, x)$ for all $x \in S$

Example

 $U = \mathbb{R}^{2}$ **Items** $x_{1} = (3, 3)$ $x_{2} = (-1, 2)$ $x_{3} = (-4, -4)$ $x_{4} = (0, -1)$ $x_{5} = (4, -3)$

Query item q = (2, 1)

Example

Result $d(q, x_1) \approx 2.236$ $d(q, x_2) \approx 3.162$ $d(q, x_3) \approx 7.810$ $d(q, x_4) \approx 2.828$ $d(q, x_5) \approx 4.472$

Advantages and disadvantages

Advantages

- Easy implementation
- Works in none metric spaces

Disadvantages

 Large runtime on big data sets and in higher multidimensional spaces

Metric

Given a set X. A *Metric* on X is a function $d: X \times X \rightarrow \mathbb{R}$, $(x, y) \mapsto d(x, y)$ with:

- 1. d(x, y) = 0 exactly when x = y.
- 2. Symmetry: For all $x, y \in X$ is true d(x, y) = d(y, x).
- 3. Triangle inequality: For all $x, y, z \in X$ is true $d(x, z) \le d(x, y) + d(y, z)$

[Forster, 2006]

Triangle inequality

Lemma For any $q, s, p \in \mathbb{U}$, $r \in \mathbb{R}$ and $P \subset \mathbb{U}$ is true:

1.
$$|d(p,q) - d(p,s)| \le d(q,s) \le d(p,q) + d(p,s)$$

2. $d(q,s) \ge d_P(q,s) := \max_{p \in P} |d(p,q) - d(p,s)|$
3. $d(p,s) > d(p,q) + r \lor d(p,s) < d(p,q) - r \Rightarrow d(q,s) > r$
4. $d(p,s) \ge 2 \cdot d(p,q) \Rightarrow d(q,s) \ge d(q,p)$

[Clarkson, 2005]

- ► Create a list for every item p ∈ S with all items x ∈ S, ordered ascending to the distance
- Choose random item $c \in S$ as initial candidate
- Calculate d(c,q)
- ▶ Go along the list of *c*
- If the current item has smaller distance to q as c, choose current item as c
- Abort, if
 - at the end of the current list or
 - d(c,s) > 2 ⋅ d(c,q) for the current item of the list (Triangle inequality 4)
- Else c is nearest neighbour

Example

 $U = \mathbb{R}^{2}$ **Items** $x_{1} = (3, 3)$ $x_{2} = (-1, 2)$ $x_{3} = (-4, -4)$ $x_{4} = (0, -1)$ $x_{5} = (4, -3)$

Query item q = (2, 1)

Example

Distances

	x ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5
<i>x</i> ₁	0	pprox 4.123	pprox 9.899	5	pprox 6.083
<i>x</i> ₂	pprox 4.123	0	pprox 6.708	pprox 3.162	pprox 7.071
<i>x</i> 3	pprox 9.899	pprox 6.708	0	5	pprox 8.062
<i>x</i> 4	5	pprox 3.162	5	0	pprox 4.472
<i>x</i> 5	pprox 6.083	pprox 7.071	pprox 8.062	pprox 4.472	0

Example

Lists $L(x_1) = \{x_2, x_4, x_5, x_3\}$ $L(x_2) = \{x_4, x_1, x_3, x_5\}$ $L(x_3) = \{x_4, x_2, x_5, x_1\}$ $L(x_4) = \{x_2, x_5, x_1, x_3\}$ $L(x_5) = \{x_4, x_1, x_2, x_3\}$

Example

- Set c := x₃ and s := x₄
- As $7.810 \approx d(c,q) >$ $d(s,q) \approx 2.828$, set c := s

Example

- Set c := x₄ and s := x₂
- ► As 2.828 ≈ d(c,q) < d(s,q) ≈ 3.162, no new c

As

 $3.162 pprox d(c,s) < 2 \cdot d(c,q) pprox 5.656$, no abort

Example

Set s := x₅
 As

 2.828 ≈ d(c,q) < d(s,q) ≈ 4.472, no new c

As

 $4.472 \approx d(c,s) < 2 \cdot d(c,q) \approx 5.656$, no abort

Example

Set s := x₁
 As

 2.828 ≈ d(c,q) > d(s,q) ≈ 2.236, set c := s

Example

- Set c := x₁ and s := x₂
 As 2.236 ≈ d(c,q) < d(s,q) ≈ 3.162, no new c
- As $4.123 \approx d(c,s) <$ $2 \cdot d(c,q) \approx 4.472$, no abort

Example

- Set s := x₄
 As

 2.236 ≈ d(c,q) < d(s,q) ≈ 2.828, no new c
- ► As $5 \approx d(c, s) >$ $2 \cdot d(c, q) \approx 4.472$, abort

Advantages and disadvantages

Advantages

Faster as Full Search

Disadvantages

Preprocessing needs large memory and runtime

Improvement

Use MarkBits to ensure that no distance is calculated twice

Annulus Method

- ► Create a list for a random item p^{*} ∈ S with all items x ∈ S, ordered ascending to the distance
- Choose random item $c \in S$
- Walk alternating away from p* and back to it in the list
- ▶ If current item *s* has smaller distance to *q* as *c*, set *c* := *s*
- Current item s is under c:
 - If d(p^{*}, s) < d(p^{*}, q) − d(c, q), ignore all items under s (Triangle inequality 3)
- Current item s is above c:
 - If d(p^{*}, s) > d(p*, q) + d(c, q), ignore all items above s (Triangle inequality 3)
- c is the nearest neighbour if the entire list is traversed

 $U = \mathbb{R}^{2}$ **Items** $x_{1} = (3, 3)$ $x_{2} = (-1, 2)$ $x_{3} = (-4, -4)$ $x_{4} = (0, -1)$ $x_{5} = (4, -3)$

Query item q = (2, 1)

Distances

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>X</i> 5
<i>X</i> 5	pprox 6.083	pprox 7.071	pprox 8.062	pprox 4.472	0

 $p^* := x_5$ with $d(p^*, q) \approx 4.472$ List $L(x_5) = \{x_5, x_4, x_1, x_2, x_3\}$

- Set c := x₂ with d(c,q) ≈ 3.162
- Set s := x₃ with d(s, q) ≈ 7.810
- ► 8.062 \approx $d(p^*, s) >$ $d(p^*, q) +$ $d(c, q) \approx 7.634 \Rightarrow$ ignore items above x_3

- Set s := x₁ with d(s, q) ≈ 2.236
- As d(s,q) < d(c,q), set c := s

- Set c := x₁ with d(c,q) ≈ 2.236
- Set s := x₄ with d(s, q) ≈ 2.828
- ► 4.472 \approx $d(p^*, s) >$ $d(p^*, q)$ $d(c, q) \approx 2.236 \Rightarrow$ ignore no items

- Set $s := x_5$ with $d(s,q) \approx 4.472 <$ $2.236 \approx d(c,q)$
- End of list, c = x₁ nearest neighbour of q

Annulus Method

Advantages and disadvantages

Advantages

- Faster as Full Search
- Less memory usage than Orchards Algorithm

AESA

Approximating and Eliminating Search Algorithm

- Create matrix with all distances d(x, y), with $x, y \in S$
- Every item is always in one status
 - Known, d(x, q) is known
 - Unknown, only $d_P(x,q)$ is known
 - Rejected, $d_P(x, q)$ is bigger as smallest known distance r
- ▶ All $x \in S$ are Unknown and $d_P(x,q) = -\infty$
- Repeat until all $x \in S$ Known oder Rejected
 - 1. Choose Unknown item $x \in S$ with smallest $d_P(x, q)$
 - 2. Calculate d(x, q), so that x gets Known
 - 3. Refresh the smallest known distance r
 - 4. Set $P := P \cup \{x\}$, refresh $d_P(x', q)$, if x' is Unknown mark x' as Rejected, if $d_P(x', q) > r$

LAESA

Linear Approximating and Eliminating Search Algorithm

- Works with a set of *pivot* items instead of a matrix
- Works best if *pivot* items are strongly separated

Outlook

Metric trees

▶ ...

Resources

- Otto Forster, 2006, Analysis 2, Friedr. Vieweg & Sohn Verlag
- Kenneth L. Clarkson, 2005, Nearest-Neighbor Searching and Metric Space Dimensions, http://kenclarkson.org/nn_survey/p.pdf